Estimating an Augmented Cost Progress Function for Tactical Aircraft

Task # T-Q7-1324 Sponsor: OSD(PA&E)

> Bruce Harmon Anduin Touw

Task Objective

- "Develop databases and methods for estimating the development and production costs of next generation fighter/attack aircraft"
- For high volume aircraft like the JSF, differing progress curve parameters will have a large effect on estimated costs

Cost Analysis & Research Division

Model Architecture

- Framework for data and estimating relationships
- Detail sufficient to capture effects of new technology/environment
 - Direct Costs
 - WBS levels 3-5
 - e.g. Airvehicle.Airframe.Structures.Wing
 - By function
 - Labor hours by category; modeled at T1/T100
 - Materials/purchased equipment dollars
 - Indirect costs
 - Fixed and variable prime contractor overhead

DRAFT
Cost Analysis
& Research
Division

Cost Progress Function Overview

- Interest in testing the effects on cost progress of phenomena beyond cumulative quantity
 - Investment/capital intensity
 - Production rate/fixed cost effects
 - Break-points/two and three-piece curves
 - Modifications/model changes/weight growth
- These effects would be important in modeling JSF costs
 - Increased automation/application of new technologies
 - High production rates
 - Large production quantity
- Ultimate goal is to unify aircraft and plant-level modeling

& Research **Division**

Cost Analysis Approach to Cost Progress **Function Estimation**

- Use existing data to estimate augmented learning curves
 - Multi-Aircraft Cost Data & Retrieval (MACDAR) database
 - Manufacturing labor
 - F-14A, F-15A/B/C/D/E, F-16A/B/C/D, F-18A/B/C/D, AV-8B
 - Includes large production runs, high rates and model changes
 - Aircraft are built in plants where plant-wide financial data are available
- Estimate generalized cost progress function
 - Cost data for 5 programs is pooled
 - Slope and other parameters are the same across programs
 - Dummy variables distinguish T1 differences
 - Nonlinear estimation

Cost Analysis & Research Division

Effects Included

- Capital Intensity
 - Change in plant-wide capital/labor ratio over life of program
 - Metric for the *i*th program, *j*th lot
 - $[\Delta K/L]_{ij} = (K/L)_{ij} (K/L)_{i1}$

(K/L)_{i1} is K/L associated with building the first lot of the jth program

- Effect on cost progress; no estimation of K/L effects on T1
 - to be included later
- Segmented progress function; two-piece curve breaking a unit 400.
- Weight growth; weight growth factor T1 adjustment
 - Allows use data from complete production run

Production rate and fixed cost effects tested, but not statistically significant

Cost Analysis & Research Division

Preferred Model Specification

- Lot $Cost_{ij} = q_{ij}(T1_iQ_{ij}^{\beta_1}) WGF_{ij}^{\beta_2} \beta_3^{[\Delta K/L]_{ij}}$, where
 - Lot Cost_{ij} is the lot cost in manufacturing hours for the jth lot of the ith aircraft model
 - q_{ii} is the lot quantity for the jth lot of the ith aircraft model
 - T1; is the first unit cost for the ith aircraft model
 - Q_{ij} is the cumulative quantity for the jth lot of the ith aircraft model calculated at the lot midpoint
 - $-\beta_1$; $Q_{ii} < 400 \neq \beta_1$; $Q_{ii} > 400$
 - WGF_{ij} is the weight growth factor for the jth lot of the ith aircraft model, where

WGF_{ij} = airframe unit weight_{ij}/ airframe unit weight_{i1}

- $-\ \beta_3\,{}^{[\Delta\,K/L]}_{ij}$ relates change in capital intensity to change in cost
 - Matched plant-wide K/L time-series to programs/lots
 - β_3 < 1; percentage change in cost per unit Δ K/L = β_3 1

Cost Analysis & Research Division

Estimation Results: Preferred Specification

Paramter Estimates

Model Fit and Hypothesis Tests

T1, K Hours	w/o K/L	with K/L		w/o K/L	with K/L
F-14			R^2	0.970	0.974
F-15			Standard Error	0.084	0.080
F-16					
F/A-18			<u>Hypothesis Tests</u>		
A/V-8B			LC B; Q>400 = LC B;	Q>400	
			Hypothesis test for	or equal Bs	
Other parameters			p leve	<.001	<.001
Slope, Q <400	77.0%	77.3%	WGF B=0		
Slope, Q >400	91.7%	93.5%	T ratio	6.4	7.6
Weight Growth B	3.36	3.60	p leve	<.001	<.001
ΔK/L B		0.9979	K/L B=1		
			T ratio	1	2.4
			p leve		0.021

Cost Analysis & Research Division

Business Case Sanity Check on ∆K/L Effect

- What is the payoff period for a an increase in K/L?
 - Increase in K/L results in a decrease in labor hours
 - Given some representative staff year cost, how long will it take for an investment to pay for itself?
- Analysis (constant 1995 dollars)
 - Increase K by 20K per direct manufacturing worker
 - Decrease labor hours by 4.3%
 - Savings in staff years
 - Value of staff year
 - 2000 hours/year X \$40/hour (wage rate + variable overhead) = 80k/year
 - Savings = 4.3% X \$80K = \$3.5K/year
 - Payoff period = 20K/3.5K = 6.1 years

Cost Analysis & Research Division

Alternate Model Specifications

Fixed cost specification:

Lot
$$Cost_{ij} = q_{ij}(T1_iQ_{ij}^{\beta_1}) WGF_{ij}^{\beta_2} \beta_3^{[\Delta K/L]}_{ij} + T1_i\beta_4$$

 $oldsymbol{b}_{ extstyle extstyle$

"Rate slope" specification:

Lot
$$Cost_{ij} = q_{ij}(T1_iQ_{ij}^{\beta_1}q_{ij}^{\beta_5}) WGF_{ij}^{\beta_2}\beta_3^{[\Delta K/L]}_{ij}$$

Where q is lot quantity; $m{b}_5$ is not statistically significant

"Divergence from optimal rate" specification:

Lot
$$Cost_{ij} = q_{ij}(T1_iQ_{ij}^{\beta_1}) WGF_{ij}^{\beta_2} \beta_3^{[\Delta K/L]}_{ij} + \beta_6 (q_{ij}^{-} R_i^*)^2$$

Where R_i* is the optimum lot quantity for the ith aircraft model

Estimates of R_i* are unstable and often counterintuitive:

	Peak rate	Ri*
F-14	86	78
F-15	135	31
F-16	219	26
F/A-18	146	117
A/V-8B	40	90

Cost Analysis & Research Division

Integrating Component CERs with the Cost Progress Function

- Build on T1 (or T100) component-level CERs
 - T1_{ik} is the T1 cost for the kth component of the ith aircraft type
 - T1hat_{ik} is the expected value of T1_{ik} given some set of physical/engineering parameters (CER predictions)
- Part of the error in estimates of T1_{ik} may be due to economic parameters:
 - $T1_i = \Sigma_k T1$ hat_{ik} $\mathbf{f}[K/L]_{i1}$ (or $T1_i = AS_k T100$ hat_{ik} $\mathbf{f}[K/L]_{i1}$)
 - Σ_k T1hat_{jk} is an instrumental variable for the technical difficulty of building the aircraft non-stochastic regressor
 - Include Σ_k T1hat_{ik} variable when estimating cost progress function
 - Estimate single intercept instead of multiple T1s

Cost Analysis & Research Division

Approach to Overhead Costs

- Goal is to unify aircraft and plant-level modeling
- Annual plant-wide overhead has been modeled as a function of direct labor and capital
 - $OH_t = \alpha + \beta_1 DL_t + \beta_2 K_t$
- This model can be linked to the cost progress function through the capital and labor variables
- Additional information is needed to make estimates
 - Business in plant other than JSF
 - Estimates of capital
 - K is exogenous
 - K/L is then estimated simultaneously with direct manufacturing labor
 or
 - K/L is exogenous
 - K is then estimated using estimates of direct labor